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Fourteen commercial soft drinks have been analyzed using colorimetric sensor arrays made from a
set of 25 chemically responsive dyes printed on a hydrophobic membrane. Digital imaging of the dye
array before and after immersion provides a color change profile as a unique fingerprint for each
specific analyte. The digital data library generated was analyzed with statistical and chemometric
methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA).
Facile identification of all of the soft drinks was readily achieved using comparison of the color change
profiles or a PCA score plot. Using a HCA dendrogram, the misclassification rate was <2%, and
even very similar sodas were easily differentiated. In addition, the monitoring of soft drinks as they
degas or upon dilution also proved to be possible. This work demonstrates the potential of our
colorimetric sensor array technology for quality assurance/control applications of sodas and perhaps
other beverages as well.
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INTRODUCTION

Quality control (QC) and quality assurance (QA) of food and
beverages are extremely important both to industry and consum-
ers. In the past decade, a variety of sensor techniques have been
developed (1-11), and various applications have been achieved
for the analyses of food and beverages (12-19). Generally, these
so-called electronic tongue and electronic nose devices consist
of an array of cross-responsive sensors and are inspired by the
mammalian gustatory and olfactory systems (20-22) in which
it is thecompositeresponse of the array that differentiates one
analyte from another. Instead of a traditional component-by-
component analysis (e.g., gas or liquid chromatography) (23),
this approach is potentially less expensive and has found some
applications in industrial practice. Most array sensors are based
on conductive polymers or electrochemical sensors; a common
limitation of such arrays, however, is their general lack of
chemical discrimination, which makes differentiation among
similar species problematic.

Recently, we have reported an optoelectronic approach that
uses a colorimetric sensor array for the general detection,
identification, and quantification of volatile organic compounds
in the gas phase (24-30). The colorimetric sensor arrays are
inexpensive disposables and, therefore, their reversibility is not
an important issue (24). Because the sensor dyes and substrate
upon which the dyes are printed are both hydrophobic, we have
even been able to use this approach for the detection and
differentiation of organic compounds dissolved in aqueous
solutions without interference from the presence of 55 M water
(30). The color change pattern of the dye array before and after

exposure to an analyte provides a color “fingerprint” for each
specific analyte (Figure 1), and this simple array system makes
facile identification of a wide variety of aqueous organic
solutions possible over a concentration range of 10-5-0.1 M.

Complex mixtures present no inherent difficulty for sensor
arrays, in general, if they have sufficientdiscriminatory power.
Obviously, the composite response of an array does not give a
component-by-component analysis, but for the purpose of
identification or quality control such an analysis is often not
required. Beverages comprise an important class of complex
mixtures, and carbonated soft drinks are, of course, one of the
most consumed beverages in the world. Not surprisingly, there
have been previous examinations of soft drinks by electronic
tongue and nose devices (19, 31-33). For example, Gardner
and co-workers developed a microsensor using surface acoustic
waves (SAW) detection, which can monitor the decarbonation
of cola versus time after opening (31). Legin and co-workers
developed an electronic tongue that could distinguish among
some soft drink samples (33). These methods, however, are
either relatively low in discriminatory ability, expensive, or
nonportable. In comparison, however, our colorimetric sensor
array has an extremely high discriminatory power (27-30), a
very low cost, and the potential for facile miniaturization. In
this work, 14 different commercial soft drinks were examined
using the colorimetric sensor array system in the liquid phase;
in addition, the effects of decarbonation and dilution were also
investigated for potential QA/QC applications.

MATERIALS AND METHODS

Sample Preparation and Instruments.Fourteen soft drinks were
purchased from local supermarkets and were used directly and freshly* Tel: 217-333-2794; fax: 217-333-2685; e-mail: ksuslick@uiuc.edu.
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from their containers. Loss of CO2 was minimized by conducting
parallel triplicate experiments immediately after the containers had been
opened. NaH2PO4‚H2O and Na2HPO4 were dissolved in purified water
(obtained using a NANOpure Ultrapure Water System, Barnstead
International) to make a 0.3 M phosphate buffer solution at pH 7.0
[the same buffer as used in prior aqueous sensing (30)]. A ThermoOrion
920A-plus pH-meter was used for pH measurements; the pH values of
the soft drinks used are listed inTable 1.

Sensor Array. The composition of the colorimetric sensor array
was described previously (30) and was prepared following the previous
procedure (24-26). This 5× 5 array was optimized for detecting acidity
in aqueous solutions, and the printed arrays are available commercially
(array CSI.083) from ChemSensing, Inc. (Champaign, IL; www.chem-
sensing.com).

Data Acquisition. Data acquisition was carried out using an ordinary
flatbed scanner (Epson Perfection 1250) following previously reported
procedures, described in the Supporting Information (30). In use, the
array is first saturated in an aqueous liquid without dissolved organics
(i.e., phosphate buffer) and imaged. After exposure to an analyte
solution, rapid color changes in the dyes are readily observed and
digitally imaged. All of the analyses of soft drink samples were
conducted in triplicate. The colors of the solutions have no significant
effects because the liquid layer between the sensor array and flatbed
scanner is extremely thin (<100µm).

Data Processing and Analysis.Simply subtracting the before-
exposure image from the after-exposure image (red value after exposure
to analyte minus red value before exposure, green minus green, blue
minus blue) provides a color change profile for the analyte solution,
as shown inFigure 1. The center of each dye spot is averaged to avoid
edge artifacts using Photoshop or a customized analysis package,
ChemEye (ChemSensing, Inc.). The color change profiles are simply
a 3N-dimensional vector (whereN ) number of dyes) that can be easily
analyzed by standard statistical and chemometric techniques. In addition
to the triplicate data, an average response was also calculated for each
analyte.

It is convenient to visually display these vectors as color change
maps by representing each spot as the absolute value of its color change
in RGB. For purposes of display, the color ranges of the images are
expanded; RGB values of 10-41 (i.e., 5 bit) were expanded to 0-255
(i.e., 8 bit). This visual representation in no way affects the actual digital
data used for chemometric analysis. The color change profiles were
compiled into a library of 75-dimensional vectors (25 red, green, and

blue color changes) with 56 entries (4 for each of 14 analytes), which
is provided in the Supporting Information.

Principal component analysis (PCA) and hierarchical clustering
analysis (HCA) (34) were performed on the library using the Multi-
Variance Statistical Package (MVSP, Kovach Computing Services,
Anglesey, Wales; www.kovcomp.co.uk) software.

RESULTS AND DISCUSSION

Molecular recognition is, of course, a function of the
interatomic, intermolecular, or interfacial interactions of the
analyte with the sensor. Our colorimetric approach to molecular
recognition (24-30) uses a cross-responsive array of chemically
diverse dyes; the design of a colorimetric sensor array is based
on stronger dye-analyte interactions rather than exclusively
physical adsorption (as in most forms of chromatography and
prior electronic nose technology). The chemically responsive
dyes fall into three general classes: (1) metal ion containing
dyes that respond to Lewis basicity (i.e., electron pair donation,
metal ion ligation), (2) pH indicators (35) that respond to
Brønsted acidity/basicity (i.e., proton acidity and hydrogen
bonding), and (3) dyes with large permanent dipoles (e.g.,
zwitterionic solvatochromic dyes) that respond to local polarity
(36). To some extent, of course, all dyes have some components
of all three classes: that is, all dyes will have some Lewis acid/
base interactions, nearly all will have some hydrogen bonding,
and all have some response to solvent polarity. For aqueous
analysis, it is important that the dyes chosen must be hydro-
phobic.

Colorimetric Sensor Array Responses.Average color
change profiles were obtained for 14 common soft drinks as
shown inFigure 2. Distinct and highly reproducible patterns
were obtained for each soft drink. Among these, two simple
carbonated waterswithout organic additives were examined:
LaCroix Sparkling Water and Canada Dry Club Soda. (All
product names are trademarks of or copyrighted by their
respective manufacturers.) Upon examination ofFigure 2, it is
obvious that the strong responses from the complex mixtures
present in other sodas donotprimarily come from the dissolved
CO2, because the carbonated water samples gave much weaker
responses than all of the other soft drinks. We are, however,
able to discriminate easily even between these two carbonated
waters on the basis of the slight differences in their CO2 content
(and resulting pH differences).

Principal Component Analysis. PCA is a mathematical
transformation used to extract variance between entries in a data
matrix by reducing the redundancy in the dimensionality of the
data. It takes the data points (changes in RGB values for each
of the dyes in the array) for all analytes and generates a set of
orthogonal eigenvectors (principal components, PCs) for maxi-

Figure 1. Image of the colorimetric sensor array before and after exposure
to 7-Up. The dyes that changed color the most are marked with circles.
For the purposes of effective visualization, the color range shown in these
representations is expanded from RGB values of 10−41 (i.e., 5 bit) to
0−255 (i.e., 8 bit).

Table 1. pH Values of the 14 Commercial Soft Drinks Used

soft drinka pHb soft drinka pHb

Coca-Cola Classic 2.50 Fanta 2.93
Diet Coke 3.38 Dr. Pepper 2.83
Pepsi 2.47 A&W Root Beer 4.67
Diet Pepsi 3.07 Canada Dry Tonic Water 2.56
Sprite 3.30 Canada Dry Club Soda 5.18
Diet Sprite 3.37 La Croix Sparkling Water 4.26
7-Up 3.24
Diet 7-Up 3.77

a All product names are trademarks of or copyrighted by their respective
manufacturers. b Measured immediately after opening.

Figure 2. Average color change profiles from the colorimetric sensor array
for 14 common soft drinks, Abbreviations: A&W RB, A&W Root Beer;
CD TW, Canada Dry Tonic Water; CD CS, Canada Dry Club Soda; LC
SW, LaCroix Sparkling Water. For the purposes of effective visualization,
the color range shown in these representations is expanded from RGB
values of 10−41 (i.e., 5 bit) to 0−255 (i.e., 8 bit); the complete digital
data are provided as Supporting Information.
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mum variance. The maximum total number of PCs equal to 3N
- 1, whereN is the number of dyes in the array (i.e., 75
dimensions for the aqueous-phase sensor array used here). PCA
essentially concentrates the data’s variation among analytes into
the minimum number of dimensions. Generally speaking, the
larger the number of PCs necessary for a certain level of
discrimination (e.g., 95% of the total data variability), the better
the sensor will be able to discriminate among similar analytes
(24).

As shown in Figure 3, 90% of all the data variance is
contained in10 dimensions of 75 total possible dimensions; 15
dimensions are required for 95% of the variance and 25
dimensions for 99%. In general, other electronic nose and
electronic tongue techniques typically have 95-99% of dis-
crimination in their firsttwo dimensions. The high dimensional-
ity (i.e., high dispersion) of the colorimetric sensor array
demonstrates the unusually high level of chemical discrimination
and, hence, an exceptional ability of the colorimetric sensor
arrays to discriminate among very similar analytes.

A three-dimensional PCA score plot was obtained using the
three most important PCs, which accounts for only 65.7% of
the total variance (Figure 4). All of the triplicates plus the
average of each soft drink sample were reasonably well clustered
together and separated from those of other samples, which is
surprising considering that less than two-thirds of the total
variance is captured inFigure 4, and the resolution between
classes is in fact better than can be shown using only three
principal component dimensions. The relative locations in the
PCA space reflect the response of the array, which is based on
the differences in the concentrations of various organic com-
pounds and the pH of each analyte, and the responses cannot
be translated exactly into the actual taste for each type of soft
drink. Nonetheless, the relative locations of the soft drink
samples on the plot roughly reflect the differences in their tastes.
For example, the data points for A&W Root Beer are relatively
distant from those of the other soft drinks in the score plot, and
likewise, the taste of root beer is also (subjectively) relatively
different from that of other soft drinks. Conversely, Diet 7-Up
and Diet Sprite (or 7-Up and Sprite, or Diet Coke and Diet
Pepsi, etc.) are spatially close, and theydo taste much alike.

Statistical Analysis and Error Analysis. A very standard
statistical procedure, HCA, provides a better alternative for
accurate representation and classification of high-dimensional
data in that it uses the full dimensionality of the data in creating
a classification dendrogram. HCA groups the analyte vectors
according to their intervector distances in their full dimensional
space (i.e., 75-dimensional). There exist various related methods

for defining clusters from the set of analyte vectors. The most
common of these is the minimum variance method (Ward’s
method) (21), which we use here. The sum of the squared
Euclidean distances (SEDs) from the group centroid to each of
the vectors in that group is used to evaluate the variance within
the group, and the groups with the minimum variance are
clustered preferentially. Those clusters are then grouped together
to form new larger scale clusters. The operation is performed
repeatedly until only one supercluster remains. A dendrogram
is generated in this fashion that shows quantitatively the
similarities among the various analytes. An HCA dendrogram
shows quantitatively the degree of similarity of the array
responses among the various analytes using the data’s full
dimensionality. It also shows any misidentifications or overlap
between individual measurements of analytes. In addition, once
a database is established, any new unknown sample can be easily
classified using the HCA dendrogram to identify the unknown
or at least to identify the database entry closest to it.

As shown in the HCA dendrogram of all soft drinks (Figure
5), all of the samples were clustered correctly with a single
misclassification (one Diet Sprite was mistakenly clustered with
Diet 7-Up, these two, after all, being rather close in taste).
Furthermore, the classes of sodas are distinct: colas separate
from citrus flavors, diet from regular, etc. These results suggest
that the HCA dendrogram may be used to identify unknown
samples.

Commercial soft drinks are normally acidic, and their pH
values do of course affect the response of the dye array. In soft
drinks, CO2 is supersaturated; as a consequence, even though
the system is not closed in our trials, we can still measure a
reproducible pH that does not change over the time of our
testing. We find, moreover, that pHdoes not play an oVer-
whelming or eVen a predominant rolein determining the array’s
responses to the soft drinks. The pH values for all 14 soft drinks
were measured using a pH-meter immediately after the contain-
ers had been opened (Table 1). The pH values of all the soft
drinks are between 2.5 and 5.2. By comparing the pH values
with the color change profiles (Figure 2) and the HCA

Figure 3. Scree plot of the cumulative percentage of variance for the 10
most important principal components obtained from the color change profile
numerical data.

Figure 4. PCA score plot using the three most important principal
components based on the data for the analysis of all soft drinks. Triplicate
data plus their average are plotted for each soft drink. The resolution
between classes is in fact much better than can be shown by these three
principal components because they account for only 65.7% of the total
variance. Abbreviations: A&W RB, A&W Root Beer; CD TW, Canada
Dry Tonic Water; CD CS, Canada Dry Club Soda; LC SW, LaCroix
Sparkling Water.

Colorimetric Sensor Array for Soft Drink Analysis J. Agric. Food Chem., Vol. 55, No. 2, 2007 239



dendrogram (Figure 5) of the 14 soft drinks, clearly pH does
not dominate the array response: for example, Diet Coke (pH
3.38) and Diet Pepsi (pH 3.07) are tightly grouped in the
dendrogram, whereas Diet Sprite (pH 3.37) is quite distant from
Diet Coke (the pH of which is essentially identical) and very
close in the dendrogram to Diet 7-Up (pH 3.77). Even though
pH is not predominant, changes in pH (or CO2 concentration
once the soda is below supersaturation), of course, will change
the array response, as in the case of degassing (discussed later).

Testing the reproducibility and reliability of a multidimen-
sional sensor array is much more complicated than that for single
sensors. The work reported here is satisfactory for proof of
concept, but there are insufficient replicates to produce a truly
rigorous cross-validation, which must remain for future work.
HCA provides an optimized model of the entire database; as
we see inFigure 5, there is only a single case of misclassifi-
cation in the 56 library entries (one Diet Sprite entry mistaken
for Diet 7-Up), that is, a misclassification rate of 1.8%.

One of the major remaining sources of error with the
colorimetric sensor arrays is in the reproducibility of the printing
of the arrays, which (in these studies) were produced by transfer

from an ink-well array to the hydrophobic membrane using an
array of dipped stainless steel pins (24-30). The level of
reproducibility in array printing, however, is improving rapidly
using noncontact printing.

Quality Control/Quality Assurance. This work suggests that
colorimetric sensor arrays might prove to be useful in QC and
QA for soft drink production in the food and beverage industry.
We have conducted two simple experiments along these lines
for proof of concept: the effects on the colorimetric sensor array
response of removal of CO2 (i.e., decarbonation) and of dilution.

The array response (done in triplicate) was determined for
two soft drinks, Pepsi and 7-Up, after degassing with an argon
gas flow. As shown inFigure 6, the color change profiles of
the array do respond to removal of CO2, and the changes in the
array response are clearly distinguishable even by eye. Another
set of experiments was conducted to determine the effect of
watering on the array response. As shown inFigure 7, the color
change profiles do change with increased dilution, and the
changes are again clearly distinguishable. By using the total
Euclidean distance as an overall measure of the array response,
one can also generate monotonic (but obviously not linear)
response curves, as shown inFigures 6band7b. These results
show the potential of the colorimetric sensor array technique
for both qualitative and quantitative applications to QA/QC of
soft drinks and perhaps other beverages as well.

In summary, we have successfully applied a new colorimetric
sensor array methodology to the analyses of 14 common soft

Figure 5. Hierarchical cluster analysis dendrogram for 14 soft drinks using
Ward’s method. All experiments were run in triplicates and an average
generated thereof. After the beverage name, the trial number or “ave”
(for average) is given. Abbreviations: A&W RB, A&W Root Beer; CD
TW, Canada Dry Tonic Water; CD CS, Canada Dry Club Soda; LC SW,
LaCroix Sparkling Water.

Figure 6. (a) Average color change profiles for Pepsi and 7-Up versus
length of time of decarbonation by bubbling with argon gas for 15, 50,
and 90 min at ∼200 mL/min. The color range of the difference maps is
expanded from RGB values of 10−41 (i.e., 5 bit) to 0−255 (i.e., 8 bit). (b)
Total Euclidean distance (i.e., square root of the sum of the squares of
each of the changes in the 108 dimensions) versus length of time of
decarbonation. The trend lines are simply smoothed curves to guide the
eye.
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drinks. A distinct and unique pattern can be obtained for each
sample with very simple experiments using a very simple
apparatus. The data can be analyzed using standard chemomet-
rics methods, including PCA and HCA, and excellent discrimi-
nation can be obtained from either a PCA score plot or an HCA
dendrogram. We have established in these studies that we can
tell the difference even between very subtly different soft drinks
with reasonable accuracy. Our preliminary results also suggest
potential applications of the colorimetric sensor array to QC
and QA in the food and beverage industry. In addition, the
extremely high dimensionality of the data from our colorimetric
arrays suggests that statistical correlations with the evaluations
by organoleptic panels (i.e., people) may prove to be possible
for quantitative prediction of human response. It is important
to realize, however, that the colorimetric sensor array is based
on the differences in the concentrations of various organic and
inorganic components (including pH) of the analytes and that
the array responses cannot be translated (at this time, at least)
into an actual human perception of taste and smell.
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